Optimized Feature Selection Based on a Least-Redundant and Highest-Relevant Framework for a Solar Irradiance Forecasting Model

Najiya Omar, Hamed Aly, Timothy Little

科研成果: 期刊稿件文章同行评审

8 引用 (Scopus)
源语言英语
页(从-至)48643-48659
页数17
期刊IEEE Access
10
DOI
出版状态已出版 - 2022

!!!ASJC Scopus Subject Areas

  • 一般工程
  • 一般材料科学
  • 一般计算机科学

指纹

探究 'Optimized Feature Selection Based on a Least-Redundant and Highest-Relevant Framework for a Solar Irradiance Forecasting Model' 的科研主题。它们共同构成独一无二的指纹。

引用此

Omar, N., Aly, H., & Little, T. (2022). Optimized Feature Selection Based on a Least-Redundant and Highest-Relevant Framework for a Solar Irradiance Forecasting Model. IEEE Access, 10, 48643-48659. https://doi.org/10.1109/ACCESS.2022.3171230