跳到主要导航
跳到搜索
跳到主要内容
Pure University (For Demo Only) 国内
帮助和常见问题
English
中文
国内
简介
研究单位
科研成果
设备
数据集
活动
奖项
影响
项目
新闻 / 媒体
按专业知识、名称或附属进行搜索
Machine learning in the prediction of depression treatment outcomes: A systematic review and meta-analysis
科研成果
:
期刊稿件
›
文献综述
›
同行评审
67
引用 (Scopus)
综述
指纹
指纹
探究 'Machine learning in the prediction of depression treatment outcomes: A systematic review and meta-analysis' 的科研主题。它们共同构成独一无二的指纹。
分类
加权
按字母排序
Keyphrases
Depression Treatment
100%
Systematic Meta-analysis
100%
Meta-analysis
100%
Prediction Accuracy
100%
Treatment Outcome
100%
Machine Learning Techniques
100%
Machine Learning
100%
Clinical Outcome Prediction
66%
Confidence Interval
66%
Outcome Prediction
66%
Non-associated
33%
Extracted Data
33%
Remission
33%
Method Validation
33%
Sample Pretreatment
33%
Literature Search
33%
Major Depressive Disorder
33%
Feature Selection
33%
Negative Relationships
33%
Mixed-effects Model
33%
Estimation Accuracy
33%
Treatment Resistance
33%
Multiple Treatments
33%
Machine Learning Applications
33%
Independent Replication
33%
Treatment Predictors
33%
Balanced Accuracy
33%
Duplicate Records
33%
Minimum Sample Size
33%
Medicine and Dentistry
Treatment of Depression
100%
Meta-Analysis
100%
Systematic Review
100%
Major Depressive Episode
50%
Prognosis
50%
Psychology
Systematic Review
100%
Meta-Analysis
100%
Depression
100%
Pharmacology, Toxicology and Pharmaceutical Science
Remission
100%
Major Depression
100%
Prognosis
100%
Neuroscience
Meta-Analysis
100%
Treatment of Depression
100%
Major Depressive Disorder
50%
Economics, Econometrics and Finance
Systematic Review
100%
Machine Learning
100%