跳到主要导航
跳到搜索
跳到主要内容
Pure University (For Demo Only) 国内
帮助和常见问题
English
中文
国内
简介
研究单位
科研成果
设备
数据集
活动
奖项
影响
项目
新闻 / 媒体
按专业知识、名称或附属进行搜索
Intrusion Detection in SCADA Based Power Grids: Recursive Feature Elimination Model with Majority Vote Ensemble Algorithm
Darshana Upadhyay, Jaume Manero, Marzia Zaman,
Srinivas Sampalli
Physics and Astronomy
科研成果
:
期刊稿件
›
文章
›
同行评审
65
引用 (Scopus)
综述
指纹
指纹
探究 'Intrusion Detection in SCADA Based Power Grids: Recursive Feature Elimination Model with Majority Vote Ensemble Algorithm' 的科研主题。它们共同构成独一无二的指纹。
分类
加权
按字母排序
Keyphrases
Accurate Solution
33%
Adaboost Tree
33%
Artificial Neural Network
33%
Bagging Ensemble
33%
Boosting Ensemble
33%
Decision Tree
33%
Detection Accuracy
33%
Efficient Detection
33%
Ensemble Algorithm
100%
Ensemble Methods
66%
Extra Trees
33%
Extreme Gradient Boosting
33%
F1 Score
33%
Feature Importance Score
33%
Feature Selection
33%
Gradient Boosting Decision Tree
33%
Heterogeneous Classifier
66%
Intrusion Detection
100%
Intrusion Detection System
33%
K-nearest
33%
Label-only
33%
Majority Vote
100%
Miss Rate
33%
Multi-class
33%
Naïve Bayes
33%
Power Grid
100%
Precision-recall
66%
Random Forest
33%
Receiver Operating Characteristic
33%
Recursive Feature Elimination
100%
Selected Features
33%
Supervisory Control
100%
Three-class
33%
Training Process
33%
Weighted Features
33%
XGBoost
33%
Computer Science
Artificial Neural Network
50%
Class Category
50%
Decision Trees
100%
Ensemble Method
100%
Experimental Result
50%
Extreme Gradient Boosting
100%
Feature Selection
50%
Gradient Boosting
50%
Intrusion Detection
100%
Intrusion Detection System
50%
Miss Rate
50%
Model Elimination
100%
Random Decision Forest
50%
Training Process
50%