跳到主要导航
跳到搜索
跳到主要内容
Pure University (For Demo Only) 国内
帮助和常见问题
English
中文
国内
简介
研究单位
科研成果
设备
数据集
活动
奖项
影响
项目
新闻 / 媒体
按专业知识、名称或附属进行搜索
Explaining the performance of black box regression models
Ines Areosa,
Luis Torgo
Dentistry
科研成果
:
图书/报告稿件的类型
›
会议稿件
3
引用 (Scopus)
综述
指纹
指纹
探究 'Explaining the performance of black box regression models' 的科研主题。它们共同构成独一无二的指纹。
分类
加权
按字母排序
Keyphrases
Regression Model
100%
Black Box
100%
Bounding Box Regression
100%
Predictor Variables
66%
Comparative Analysis
33%
Machine Learning
33%
Performance Prediction
33%
Expected Error
33%
Visual Display
33%
Multiple Models
33%
Expected Risk
33%
Machine Data
33%
Case-based Analysis
33%
Prediction Error
33%
Data Mining Model
33%
Mathematics
Regression Model
100%
Black Box
100%
End User
66%
Predictor Variable
66%
Data Mining
33%
Prediction Error
33%
Predictive Performance
33%
Multiple Model
33%
Computer Science
Predictor Variable
100%
Machine Learning
50%
Predictive Performance
50%
Visual Display
50%
Comparative Analysis
50%
Prediction Error
50%
Data Mining Model
50%
Engineering
Black Box
100%
End-Users
66%
Predictor Variable
66%
Comparative Analysis
33%
Prediction Error
33%
Expected Risk
33%
Chemical Engineering
Learning System
100%