跳到主要导航
跳到搜索
跳到主要内容
Pure University (For Demo Only) 国内
帮助和常见问题
English
中文
国内
简介
研究单位
科研成果
设备
数据集
活动
奖项
影响
项目
新闻 / 媒体
按专业知识、名称或附属进行搜索
Competition instabilities of spike patterns for the 1D Gierer–Meinhardt and Schnakenberg models are subcritical
Theodore Kolokolnikov
, Frédéric Paquin-Lefebvre, Michael J. Ward
Neuroscience
科研成果
:
期刊稿件
›
文章
›
同行评审
8
引用 (Scopus)
综述
指纹
指纹
探究 'Competition instabilities of spike patterns for the 1D Gierer–Meinhardt and Schnakenberg models are subcritical' 的科研主题。它们共同构成独一无二的指纹。
分类
加权
按字母排序
Mathematics
Numerical Simulation
100%
Partial Differential Equation
100%
Asymptotic Expansion
100%
Nonlinear Analysis
100%
Asymmetric
100%
Eigenvalue
100%
Bifurcation Point
100%
Eigenvalue Problem
100%
Numerical Solution
100%
Symmetry Breaking
100%
Keyphrases
Spike Patterns
100%
Schnakenberg Model
100%
Competition Instability
100%
Boundary Spike
57%
Instability Threshold
28%
Reaction-diffusion System
28%
Linear Instability
28%
Amplitude Equations
28%
Steady State
14%
Parameter Values
14%
Numerical Simulation
14%
Weakly Nonlinear Theory
14%
Diffusivity
14%
Spatial Configuration
14%
PDE
14%
Eigenvalue Crossing
14%
Two-component
14%
Zero Eigenvalue
14%
Symmetry-breaking Bifurcation
14%
Numerical Bifurcation
14%
Diffusion Ratio
14%
Diffusion Field
14%
Coarsening Processes
14%
Nonlocal Eigenvalue Problem
14%
Unstable Branch
14%
Bifurcation Point
14%
Reaction-diffusion
14%
Singular Limit
14%
Bulk Diffusion
14%
Weakly Nonlinear Analysis
14%
Symmetric Boundaries
14%
Linear Theory
14%
Multiscale Asymptotic Expansion
14%
Steady-state Problem
14%
Numerical Solution
14%
Engineering
Eigenvalue
100%
Diffusivity
100%
Instability Threshold
100%
Computer Simulation
50%
Numerical Solution
50%
Linear Theory
50%
Asymptotic Expansion
50%
Nonlinear Theory
50%
Nonlinear Analysis
50%
Spatial Configuration
50%
Bifurcation Point
50%
Multiscale
50%
Steady State Problem
50%
Bulk Diffusion
50%