跳到主要导航
跳到搜索
跳到主要内容
Pure University (For Demo Only) 国内
帮助和常见问题
English
中文
国内
简介
研究单位
科研成果
设备
数据集
活动
奖项
影响
项目
新闻 / 媒体
按专业知识、名称或附属进行搜索
A Distributed Hierarchical Deep Computation Model for Federated Learning in Edge Computing
Haifeng Zheng, Min Gao,
Zhizhang Chen
, Xinxin Feng
Biochemistry, Genetics and Molecular Biology
科研成果
:
期刊稿件
›
文章
›
同行评审
38
引用 (Scopus)
综述
指纹
指纹
探究 'A Distributed Hierarchical Deep Computation Model for Federated Learning in Edge Computing' 的科研主题。它们共同构成独一无二的指纹。
分类
加权
按字母排序
Keyphrases
Edge Computing
100%
Deep Computation Model
100%
Federated Learning
100%
Edge Nodes
80%
Hierarchical Tensor
40%
Performance Evaluation
20%
Machine Learning Techniques
20%
Low-dimensional Subspace
20%
Deep Learning
20%
Learning Model
20%
Training Data
20%
Energy Consumption Reduction
20%
Data Distribution
20%
Training Effectiveness
20%
Data Privacy
20%
Tensor Space
20%
Novel Machine
20%
Back Propagation Algorithm
20%
Memory Requirements
20%
Model Update
20%
Bandwidth Utilization
20%
Dimensional Parameters
20%
Storage Requirement
20%
Shared Learning
20%
Network Bandwidth
20%
Big Data Analytics
20%
Edge Computing System
20%
Local Data
20%
High-dimensional Tensor
20%
Computer Science
Edge Computing
100%
Federated Learning
100%
Dimensional Subspace
20%
Energy Consumption
20%
Deep Learning
20%
Performance Evaluation
20%
Machine Learning Technique
20%
Data Distribution
20%
Training Data
20%
Data Privacy
20%
Computing Environment
20%
Memory Requirement
20%
Backpropagation Algorithm
20%
Big Data Analytics
20%
Storage Requirement
20%
Communication Bandwidth
20%