跳到主要导航
跳到搜索
跳到主要内容
Pure University (For Demo Only) 国内
帮助和常见问题
English
中文
国内
简介
研究单位
科研成果
设备
数据集
活动
奖项
影响
项目
新闻 / 媒体
按专业知识、名称或附属进行搜索
联系专家
查看 Scopus 资料
Marco Pavone
Dalhousie University
,
Computer Science
Halifax, Nova Scotia, Canada B3H 4R17
h-index
h10-index
h5-index
9780
引用
49
H-指数
根据储存在 Pure 的刊物以及来自 Scopus 的引用文献数量计算
7902
引用
44
H-指数
根据储存在 Pure 的刊物以及来自 Scopus 的引用文献数量计算
3071
引用
28
H-指数
根据储存在 Pure 的刊物以及来自 Scopus 的引用文献数量计算
2007
2024
每年的科研成果
综述
指纹
网络
科研成果
(302)
新闻 / 媒体
(91)
相似简介
(5)
指纹
深入其中 Marco Pavone 为活跃的研究主题。这些主题标签来自此人的成果。它们共同形成唯一的指纹。
分类
加权
按字母排序
Computer Science
Robot
100%
Motion Planning
94%
Case Study
79%
Predictive Model
66%
Autonomous Vehicles
59%
Transportation Network
36%
Vehicle Routing
29%
Network Flow Model
28%
Planning Algorithm
24%
Convex Optimization
23%
Reinforcement Learning
23%
Decision-Making
22%
Nonlinear System
21%
multiple robot
21%
Prediction Model
21%
Convex Combination
19%
Temporal Logic
19%
Service Request
19%
Multi Agent Systems
19%
Control Algorithm
19%
Customer Demand
17%
Risk Constraint
16%
Systems Performance
16%
Linear Program
16%
Large Language Model
15%
multi agent
15%
Neural Network
15%
Input Distribution
14%
Routing Problem
14%
Conformal Prediction
14%
Dynamic Programming
14%
Performance Metric
14%
Participatory Design
13%
Decentralized Control
13%
Total Workload
13%
Autonomous Driving
13%
Structural Property
13%
Distributed Algorithm
13%
Pickup and Delivery Problem
13%
Lifecycle Management
13%
Data Lifecycle
13%
Logical Structure
13%
Adversarial Machine Learning
13%
Confidence Score
13%
Urban Transportation System
13%
Robotic Network
13%
Multiobjective Search
13%
Multiobjective
13%
Warning System
13%
Private Vehicle
13%
Keyphrases
Autonomous Mobility-on-demand (AMoD)
61%
On-demand Systems
61%
Cloud Robotics
19%
Self-driving Cars
17%
Congestion
17%
Robotics
16%
Coordination Algorithms
15%
Robotic Vehicle
15%
Transportation Network
15%
Manhattan
13%
New York City
13%
Calibration Metric
13%
Local Calibration
13%
Information Lifecycle Management
13%
Gradient Method
13%
Logical Structure
13%
Temporal Logic Specification
13%
Signal Temporal Logic
13%
Network Offload
13%
Offloading Policy
13%
Network Structural Properties
13%
Fisher Market
13%
Robotic Mobility
13%
Conformal Prediction
13%
Mixed Traffic
13%
Spacecraft Motion
13%
Traffic Assignment
13%
Planetary Bodies
13%
Design Experimentation
13%
Communication Design
13%
AI Inference
13%
Congestion-aware Routing
13%
Traffic Routing
13%
Refunding Scheme
13%
Robot Motion Planning
12%
Deep Neural Network
11%
Public Transit
10%
Autonomous Vehicles
10%
Shared Vehicles
9%
Wiltshire
9%
Sampling-based Motion Planning
9%
OOD Detection
9%
Motion Planning
9%
Finite Sample
9%
System Optimum
9%
Cloud Communication
8%
Offloading Strategy
8%
Mobility-on-demand
8%
Transportation System
8%
Hardware Experiment
8%