Quantifying the uncertainty in model parameters using gaussian process-based markov chain monte carlo: An application to cardiac electrophysiological models

Jwala Dhamala, John L. Sapp, Milan Horacek, Linwei Wang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Citations (Scopus)
Original languageEnglish
Title of host publicationInformation Processing in Medical Imaging - 25th International Conference, IPMI 2017, Proceedings
EditorsHongtu Zhu, Marc Niethammer, Martin Styner, Hongtu Zhu, Dinggang Shen, Pew-Thian Yap, Stephen Aylward, Ipek Oguz
PublisherSpringer Verlag
Pages223-235
Number of pages13
ISBN (Print)9783319590493
DOIs
Publication statusPublished - 2017
Event25th International Conference on Information Processing in Medical Imaging, IPMI 2017 - Boone, United States
Duration: Jun 25 2017Jun 30 2017

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume10265 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference25th International Conference on Information Processing in Medical Imaging, IPMI 2017
Country/TerritoryUnited States
CityBoone
Period6/25/176/30/17

ASJC Scopus Subject Areas

  • Theoretical Computer Science
  • General Computer Science

Keywords

  • Gaussian process
  • Markov chain monte carlo
  • Personalized modeling
  • Probabilistic parameter estimation

Fingerprint

Dive into the research topics of 'Quantifying the uncertainty in model parameters using gaussian process-based markov chain monte carlo: An application to cardiac electrophysiological models'. Together they form a unique fingerprint.

Cite this