Improving disentangled representation learning with the beta bernoulli process

Prashnna Gyawali, Zhiyuan Li, Cameron Knight, Sandesh Ghimire, B. Milan Horacek, John Sapp, Linwei Wang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

10 Citations (Scopus)
Original languageEnglish
Title of host publicationProceedings - 19th IEEE International Conference on Data Mining, ICDM 2019
EditorsJianyong Wang, Kyuseok Shim, Xindong Wu
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1078-1083
Number of pages6
ISBN (Electronic)9781728146034
DOIs
Publication statusPublished - Nov 2019
Event19th IEEE International Conference on Data Mining, ICDM 2019 - Beijing, China
Duration: Nov 8 2019Nov 11 2019

Publication series

NameProceedings - IEEE International Conference on Data Mining, ICDM
Volume2019-November
ISSN (Print)1550-4786

Conference

Conference19th IEEE International Conference on Data Mining, ICDM 2019
Country/TerritoryChina
CityBeijing
Period11/8/1911/11/19

ASJC Scopus Subject Areas

  • General Engineering

Keywords

  • Disentangled Representation
  • Non-parametric latent factor model
  • Variational Autoencoder

Fingerprint

Dive into the research topics of 'Improving disentangled representation learning with the beta bernoulli process'. Together they form a unique fingerprint.

Cite this