Fast unsupervised online drift detection using incremental kolmogorov-smirnov test

Denis Dos Reis, Peter Flach, Stan Matwin, Gustavo Batista

Research output: Chapter in Book/Report/Conference proceedingConference contribution

110 Citations (Scopus)
Original languageEnglish
Title of host publicationKDD 2016 - Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
PublisherAssociation for Computing Machinery
Pages1545-1554
Number of pages10
ISBN (Electronic)9781450342322
DOIs
Publication statusPublished - Aug 13 2016
Externally publishedYes
Event22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2016 - San Francisco, United States
Duration: Aug 13 2016Aug 17 2016

Publication series

NameProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
Volume13-17-August-2016

Conference

Conference22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2016
Country/TerritoryUnited States
CitySan Francisco
Period8/13/168/17/16

ASJC Scopus Subject Areas

  • Software
  • Information Systems

Keywords

  • Cartesian tree
  • Concept drift
  • Data stream
  • Kolmogorov-Smirnov
  • Lazy propagation
  • Treap

Fingerprint

Dive into the research topics of 'Fast unsupervised online drift detection using incremental kolmogorov-smirnov test'. Together they form a unique fingerprint.

Cite this