Data integration model for air quality: a hierarchical approach to the global estimation of exposures to ambient air pollution

Gavin Shaddick, Matthew L. Thomas, Amelia Green, Michael Brauer, Aaron van Donkelaar, Rick Burnett, Howard H. Chang, Aaron Cohen, Rita Van Dingenen, Carlos Dora, Sophie Gumy, Yang Liu, Randall Martin, Lance A. Waller, Jason West, James V. Zidek, Annette Prüss-Ustün

Research output: Contribution to journalArticlepeer-review

126 Citations (Scopus)
Original languageEnglish
Pages (from-to)231-253
Number of pages23
JournalJournal of the Royal Statistical Society. Series C: Applied Statistics
Volume67
Issue number1
DOIs
Publication statusPublished - Jan 2018

ASJC Scopus Subject Areas

  • Statistics and Probability
  • Statistics, Probability and Uncertainty

Keywords

  • Air pollution
  • Bayesian hierarchical modelling
  • Data fusion
  • Environmental health effects
  • Global burden of disease
  • Integrated nested Laplace approximations
  • Spatial modelling

Fingerprint

Dive into the research topics of 'Data integration model for air quality: a hierarchical approach to the global estimation of exposures to ambient air pollution'. Together they form a unique fingerprint.

Cite this