Applying Machine Learning to Arsenic Species and Metallomics Profiles of Toenails to Evaluate Associations of Environmental Arsenic with Incident Cancer Cases

Sheida Majouni, Jong Sung Kim, Ellen Sweeney, Erin Keltie, Syed Sibte Raza Abidi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Citations (Scopus)
Original languageEnglish
Title of host publicationChallenges of Trustable AI and Added-Value on Health - Proceedings of MIE 2022
EditorsBrigitte Seroussi, Patrick Weber, Ferdinand Dhombres, Cyril Grouin, Jan-David Liebe, Jan-David Liebe, Jan-David Liebe, Sylvia Pelayo, Andrea Pinna, Bastien Rance, Bastien Rance, Lucia Sacchi, Adrien Ugon, Adrien Ugon, Arriel Benis, Parisis Gallos
PublisherIOS Press BV
Pages3-7
Number of pages5
ISBN (Electronic)9781643682846
DOIs
Publication statusPublished - May 25 2022
Externally publishedYes
Event32nd Medical Informatics Europe Conference, MIE 2022 - Nice, France
Duration: May 27 2022May 30 2022

Publication series

NameStudies in Health Technology and Informatics
Volume294
ISSN (Print)0926-9630
ISSN (Electronic)1879-8365

Conference

Conference32nd Medical Informatics Europe Conference, MIE 2022
Country/TerritoryFrance
CityNice
Period5/27/225/30/22

ASJC Scopus Subject Areas

  • Biomedical Engineering
  • Health Informatics
  • Health Information Management

Fingerprint

Dive into the research topics of 'Applying Machine Learning to Arsenic Species and Metallomics Profiles of Toenails to Evaluate Associations of Environmental Arsenic with Incident Cancer Cases'. Together they form a unique fingerprint.

Cite this