A Machine-learning Method for Identifying Multiwavelength Counterparts of Submillimeter Galaxies: Training and Testing Using AS2UDS and ALESS

Fang Xia An, S. M. Stach, Ian Smail, A. M. Swinbank, O. Almaini, C. Simpson, W. Hartley, D. T. Maltby, R. J. Ivison, V. Arumugam, J. L. Wardlow, E. A. Cooke, B. Gullberg, A. P. Thomson, Chian Chou Chen, J. M. Simpson, J. E. Geach, D. Scott, J. S. Dunlop, D. FarrahP. Van Der Werf, A. W. Blain, C. Conselice, M. Michałowski, S. C. Chapman, K. E.K. Coppin

Research output: Contribution to journalArticlepeer-review

28 Citations (Scopus)
Original languageEnglish
Article number101
JournalAstrophysical Journal
Volume862
Issue number2
DOIs
Publication statusPublished - Aug 1 2018

ASJC Scopus Subject Areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Keywords

  • cosmology: observations
  • galaxies: evolution
  • galaxies: formation
  • galaxies: high-redshift
  • galaxies: starburst
  • submillimeter: galaxies

Fingerprint

Dive into the research topics of 'A Machine-learning Method for Identifying Multiwavelength Counterparts of Submillimeter Galaxies: Training and Testing Using AS2UDS and ALESS'. Together they form a unique fingerprint.

Cite this