A comparison of linear regression, regularization, and machine learning algorithms to develop Europe-wide spatial models of fine particles and nitrogen dioxide

Jie Chen, Kees de Hoogh, John Gulliver, Barbara Hoffmann, Ole Hertel, Matthias Ketzel, Mariska Bauwelinck, Aaron van Donkelaar, Ulla A. Hvidtfeldt, Klea Katsouyanni, Nicole A.H. Janssen, Randall V. Martin, Evangelia Samoli, Per E. Schwartz, Massimo Stafoggia, Tom Bellander, Maciek Strak, Kathrin Wolf, Danielle Vienneau, Roel VermeulenBert Brunekreef, Gerard Hoek

Research output: Contribution to journalArticlepeer-review

230 Citations (Scopus)
Original languageEnglish
Article number104934
JournalEnvironment International
Volume130
DOIs
Publication statusPublished - Sept 2019

ASJC Scopus Subject Areas

  • General Environmental Science

Keywords

  • Fine particles
  • Land use regression
  • Machine learning
  • Nitrogen dioxide

Fingerprint

Dive into the research topics of 'A comparison of linear regression, regularization, and machine learning algorithms to develop Europe-wide spatial models of fine particles and nitrogen dioxide'. Together they form a unique fingerprint.

Cite this